Weediness Traits
Chaney, L., & Baucom, R.S. (2012) The evolutionary potential of Baker’s weediness traits in the common morning glory, Ipomoea purpurea (Convolvulaceae). American Journal of Botany, (99)9, 1524-1530. <doi:10.3732/ajb.1200096>
Abstract
Premise of the study: Many reports have cited Baker’s list of weediness traits, or those that exemplify the “ideal” weed, yet few have considered the evolutionary potential of such traits as a group. Thus, it is unknown whether constraints on the evolution of increased weediness, such as a lack of genetic variation or genetic correlations between the traits, are present. Ipomoea purpurea, the common morning glory, is a problematic weed that exhibits many of Baker’s ideal weed traits.
Methods: We used progeny from a half/full-sib breeding design in a series of three greenhouse experiments to assess the presence of genetic variation, narrow sense heritabilities, and genetic correlations in Baker’s growth, competition, and fitness “weediness” traits in two populations of I. purpurea.
Key results: We uncovered genetic variation underlying reproductive fitness traits and competitive ability in at least one population, but no evidence of genetic variation underlying growth rate in either population. Genetic correlations between many of the weediness characters differed significantly from zero; however, their direction and/or magnitude differed between populations.
Conclusions: We found that increased weediness in the common morning glory is more likely to occur through selection on reproductive output and competitive ability rather than through selection on growth rate. Assessing Baker’s traits in a quantitative genetics framework can provide a solid perspective on their evolutionary potential and a unique framework within which to determine how weeds will respond to different environmental stresses and/or scenarios of global climate change.
Methods: We used progeny from a half/full-sib breeding design in a series of three greenhouse experiments to assess the presence of genetic variation, narrow sense heritabilities, and genetic correlations in Baker’s growth, competition, and fitness “weediness” traits in two populations of I. purpurea.
Key results: We uncovered genetic variation underlying reproductive fitness traits and competitive ability in at least one population, but no evidence of genetic variation underlying growth rate in either population. Genetic correlations between many of the weediness characters differed significantly from zero; however, their direction and/or magnitude differed between populations.
Conclusions: We found that increased weediness in the common morning glory is more likely to occur through selection on reproductive output and competitive ability rather than through selection on growth rate. Assessing Baker’s traits in a quantitative genetics framework can provide a solid perspective on their evolutionary potential and a unique framework within which to determine how weeds will respond to different environmental stresses and/or scenarios of global climate change.